

OmniPro-l'mRT software

Pre-treatment verification for IMRT/IGRT and Rotational therapy

Efficiency at work

OmniPro-I´m*RT* is an intuitive, user friendly application software for complete plan verification and QA of IMRT / IGRT and Rotational treatments.

OmniPro-I'm*RT* incorporates the latest software technology with extensive and flexible import and export functionalities. It compares TPS planned data with measured 2D data from the I'm*RT* MatriXX and MatriXX^{Evolution}, EPID or film exposed e.g. in the I'm*RT* Phantom.

Easy parameter set-up allows fast, real-time verification of measured vs planned treatments.

Various types of 1D, 2D and 3D visualization and mathematical comparison techniques of dynamic treatment deliveries vs plan are included. Customizable macro settings enable optimal efficiency and integration in the workflow.

The software comprises efficient functions for storage and retrieval of data for e.g. print-out, export or reimbursement purposes.

Use cases:

- > IMRT / IGRT / Rotational delivery vs plan verification
- > Step & Shoot and dynamic field verification
- Linac QA (symmetry, flatness, penumbra)
- Analysis of individual segments and composed IMRT fields
- ► Light vs radiation field congruence
- > Real-time visualization of the measured 2D delivery
- > Time based analysis e.g. Linac start-up behavior
- ► Multiple profile analysis
- Rotational therapy interface:
 - angular dependence optimization
 - dose per frame as a function of the gantry angle

Pre-treatment verification in only 4 steps

10 features (V 1.7) to further increase efficiency and accuracy

2 Advanced interpolation method "Fermi Fit"

As interpolation method either the linear interpolation or the "Fermi Fit" can be selected.

The "Fermi Fit" is used to fit the measurements at the field edges to the expected shape of the field penumbra:

- Calculation of field width and penumbra
- > Also applicable for multiple profile analysis
- Determination of MLC leaf positions

Maximize efficiency, minimize errors

Visual comparison

1D profile comparison & analysis

> 2D isodose comparison using dynamic isodoses

- Verification of planned vs measured, measured vs measured and planned vs planned data
- 1D, 2D and 3D data visualization: profiles, isodose contours, 2D/3D dose distributions and histograms for data sets and results
- Advanced isodose set-up with template files
- > Synchronized zoom function
- Extensive cursor analysis functions such as distance, position, angle etc.
- ROI analysis

Automated mathematical analysis

- Absolute dose verification
- Verification of planned vs measured, measured vs measured and planned vs planned data
- Basic mathematics:
 - sum
 - (absolute) difference
 - multiplication
 - division
- Advanced mathematics:
 - correlation
 - DTA (distance to agreement)
 - extended Gamma method
 - (threshold, gamma angle, optimized algorithm)
- ► ROI analysis
- Rescaling, Automatic Origin Correction, Shifting, Turning, Smoothing, Flipping, Cutting, Adding Constant Values, Changing Plane, Converting Grid
- User-defined filters for image processing (e.g. edge detection, sharpen, gaussian blur)
- Multi profile analysis (e.g. for MLC check)

Archive, Report, Export

- Export and import of generic ASCII files, TIFF (16 bit grayscale), lossless JPG and configurable raw binary, RFA-300 beam data, data export to OmniPro-Advance via opg.
- Export of single or multiple profiles to OmniPro-Accept via ASCII
- Copy & Paste (e.g. to Microsoft[®] Excel, Word, Notepad)
- Export of MatriXX images to the TomoTherapy[®] system (e.g. TIFF-Files)
- Print single views
- Advanced print report: Cursor on the images, Gamma-values, flexible line width and other information
- Export of data as DICOM RT images

Interfacing flexibility to suit your needs

TPS import

- ► Import of planned 2D and 3D dose from
 - all TPS supporting DICOM RT (from network and files)
 - RTOG (ASCII and binary) formats
 - proprietary formats
 (e.g. BrainLAB, CMS, Plato, CadPlan)
- Import of fluence maps from various TPS e.g. CadPlan, Pinnacle, CMS, BrainLAB,
- > Eclipse (via DICOM RT plan compensator)
- ➤ EPID data via iViewGT[™] browser
- > EPID data via DICOM interface (optional)
- Import data from TomoTherapy[®] system (DICOM, ASCII)
- > Flexible extended DICOM interface:
 - DICOM Listener runs as a Windows[®] Service even if OmniPro-I'm*RT* is not started
 - import of DICOM directory
 - import & export of data as DICOM RT images

Film scanner types

- Film data from Vidar, Kodak (Lumisys),
 16 bit grayscale TIFF images and DICOM CR
- Scanner and film calibration routines
- ➤ Scanners: Vidar™ VXR-16, VXR-16 DosimetryPRO, DosimetryPRO Advantage/Kodak (Lumisys)
- Film Digitizer (e.g. Kodak CR, Agfa) via import of DICOM CR files
- Support of gafchromic[®] films including extraction of one RGB channel

Phantoms

Two phantoms are available:

- ► MULTICube for Rotational Therapy (MatriXX^{Evolution}, film)
- I'mRT Phantom for IMRT Film Dosimetry

2D digital systems

Two versions are available:

- ► I'mRT MatriXX for IMRT / IGRT treatment verification
- MatriXX^{Evolution} for IMRT / IGRT and Rotational treatment verification

EPID

OmniPro-I'm*RT* can import DICOM data from all current EPID systems

in Dens	.Palent 🛄	Demo treatment		test int bean1
	Description	Type	Pind factor	
909	est inst bean1 0610.0319.40.44	MRT single seg.	0.45001	
	in test int bean1 0610.0319.4050	MRT single seg.	0.36272	- 1
"abents	Casting have 1 (0510/010 4104	ANT sinds see	0.55007	
	Cast int least 051003124112	MOT-indexed	0.40322	
	Unit int hear 1 06 10 (319 41 17	MRT sincle sea	0.45770	E
	est int bean1 0610.0319.4123	MRT-inde seg	0.46424	
	set int bean1 0610.0319.4131	MRT-single seg.	0.50003	
44	est int bean1 0610.0319:47.40	MRT-single seg.	0.53036	
	st int bean1 0610.03134140	MPIT-single seg	0.35450	
	est int bean1 0610.0319.4156	MRT-single seg	0.72038	
riela	ust int bean1 0610.0319.4202	MRT ongle seg	0.45377	
1000	est init bean1 0610.03194207	MPIT-single seg.	0.51326	
8	U elt alt bean 061003134213	Ment-ongelseg	0.407/6	
	Li en en bean de localitatet 21	wern unge reg.	ne	
mager				
114				
主日				
onpose				
-				
81				
e v				
Ver				
elected				
maget	152		-	

Minimum computer requirements

Operating system:	Microsoft [®] Windows [®] (XP, Vista [™] * 32-bit)		
Processor:	Pentium® (or equivalent), 1.8 GHz or better		
Memory:	2 GB RAM (recommended for real-time intensity mode)		
Hard disk:	with at least 160 MB available, recommended 40 GB for data archiving		
Monitor and graphics:	supporting a resolution of 1024 x 768 pixel at True Colour (32-bit)		
Ports:	available Ethernet connection (RJ-45 for MatriXX) interface to film scanner, USB 2.0		
Film scanners supported:	Vidar [™] VXR-16, VXR-16 DosimetryPRO, DosimetryPRO Advantage, Kodak (Lumisys)**, Flatbed scanners (via import of 48 bit colour tif data) and CR scanners (Kodak, Agfa) via import of DICOM CR files		
Import of planned data:	CadPlan (dose / fluence), CMS (dose / fluence), BrainLAB (dose / fluence), Plato (dose), Pinnacle (fluence) and from all TPS that support DICOM RT or RTOG formats		

Technical data is subject to change without prior notice.

* Some accessories might not be Microsoft[®] Windows[®] Vista[™] compatible (e.g. Film scanner) **Some devices may not be supported by Windows[®] 2000, XP, Vista[™]

Manufacturer:

Sweden **IBA Dosimetry AB** P.O. Box 1004 751 40 Uppsala Tel.: +46 18 18 07 00 Fax: +46 18 12 75 52

Germany

IBA Dosimetry GmbH Bahnhofstr. 5 90592 Schwarzenbruck Tel.: +49 9128 607 0 Fax: +49 9128 607 10

USA

IBA Dosimetry America

3150 Stage Post Drive, Suite 110 Bartlett, TN 38133 Tel.: +1 901 386 2242 Fax: +1 901 382 9453

China

IBA Dosimetry China

No.6, Xing Guang Er Jie Beijing OPTO-mechatronics Industrial Park (OIP), Tongzhou District Beijing 101111 Tel.: +86 10 8080 9288 Fax: +86 10 8080 9299

CE 0413

